anguage model: <i>OPT</i>			GQA-REX [14,8]			VQA-X [15]						
/QA model: <i>ALBEF</i>	Setting	Framework ↓	B 4	Μ	RL	С	S	B4	Μ	RL	С	S
		ZeroCap _{GPT-2} [41]*	1.4	4.6	12.3	16.9	5.3	0.7	4.7	14.0	5.8	2.0
Datasets: GQA-REX and VQA-X		EPT _{GPT-2} [40]*				2.6						
Aetrics: Bleu-4, Meteor,	Zero-shot	MAGIC _{GPT-2} [37]*				41.1						
Rouge-L, Cider, Spice		MAGIC _{OPT 6.7B} [37]* Socratic Models _{OPT 6.7B} [47]*				48.8						
louge L, cluct, Spice												
nference speed: 7.2s / sample		ZS-A2T _{OPT 6.7B} (ours)	10.2	18.2	35.0	113.5	31.4	8.5	13.8	34.2	38.1	10.5
	Supervised	NLX-GPT [31] GPT-2	-	_	-	-	-	23.8	20.3	47.2	89.2	18.3
	Supervised	VisualBert-REX [8] LSTM	54.6	39.2	78.6	464.2	46.8	-	-	-	-	-

Qualitative Results

- Attention rollout selects relevant image regions that correspond to the question.
- The translations are fluent and refer to visual elements.
- The translations contain visual information from the attention patterns.

is in the front of the photo? The answer is truck because it's a pickup.

What kind of vehicle

What kind of place is this? The answer is train station because it's the only place the train goes.

Zero-shot Translation of Attention Patterns in VQA Models to Natural Language

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

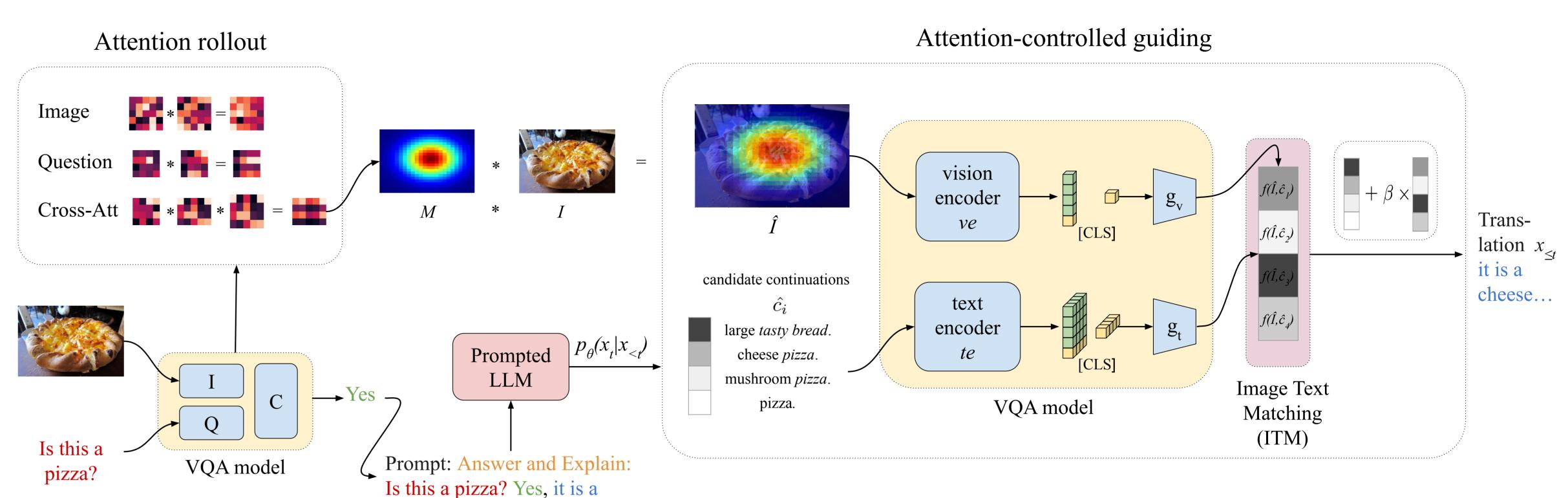
Motivation

- Deep learning algorithms need to be transparent and accessible.
- Natural language can be more intuitive than salient visual regions.
- Translating model internals into text should work in a zero-shot fashion without training.

Experiments

- Lar
- VQ
- Da
- Me Ro
- Inf

- $f(\hat{I}, \hat{c}_i)$



Leonard Salewski¹, A. Sophia Koepke¹, Hendrik P. A. Lensch¹, Zeynep Akata^{1,2} ¹University of Tübingen, ²MPI for Intelligent Systems

The ZS-A2T Framework

• Zero-Shot Attention-to-Text Attention-controlled guiding based on Attention Rollout of the VQA model Image Text Matching (ITM)

$$_{i}) = \frac{e^{\kappa \cdot \operatorname{CosSim}\left(g_{v}\left(ve(\hat{I})\right),g_{t}\left(te(\hat{c}_{i})\right)\right)}}{\sum_{j \in 1,...,k} e^{\kappa \cdot \operatorname{CosSim}\left(g_{v}\left(ve(\hat{I})\right),g_{t}\left(te(\hat{c}_{j})\right)\right)}}$$

Quantitative Results

What is this man doing? The answer is playing tennis because he is a tennis player.

the kids? The answer is yes

The authors thank IMPRS-IS for supporting Leonard Salewski. This work was partially funded by the Max Planck Society, the BMBF Tübingen AI Center (FKZ: 01IS18039A), DFG (EXC number 2064/1 – Project number 390727645), ERC (853489-DEXIM), and DFG-CRC 1233 (Project number 276693517).


Ablations

- Influence of attention masking
- Influence of text continuations -
- Different language models -
- Visual explanation methods
- Few-shot prompt ablations —

Model	n	B4	Μ	RL	С	S
ZS-A2T	0	8.5	13.8	34.2	38.1	10.5
ZS-A2T	1	9.8	14.5	34.8	42.7	11.7
ZS-A2T	5	11.9	15.3	37.5	49.6	12.4

No Conti ZS-A2T

Does the bus like because the bus is a school bus.

imprs-is

Guiding Input	B 4	Μ	RL	С	S
Full Image	8.1	13.7	34.1	37.6	10.8
No Continuation	6.2	12.5	31.1	28.2	9.4
ZS-A2T (Rel. Masking + Cont.)	8.5	13.8	34.2	38.1	10.5
LM (#Params) B4 M	R	L	С	S	
GPT-2 (125M) 3 6 11 () 26	6 10	987	7	

OPT (2.7B) OPT (6.7B)				31.0 38.1	
OPT (1.3B)	7.1	13.0	32.8	28.9	9.2
OPT (350M)	3.9	11.6	27.9	20.2	7.9
OPT (125M)	3.4	10.7	26.5	18.5	7.1
JP1-2 (125M)	3.0	11.0	26.6	19.8	1.1

Conclusion

- ZS-A2T translates aggregated the attention of a VQA model into natural language.
- Our method does not need training and can be used with any language model or visual explanation method.